Synthesis of 3- β-D-Ribofuranosylwybutine, the Most Probable Structure for the Hypermodified Nucleoside Isolated from Yeast Phenylalanine Transfer Ribonucleic Acids

Taisuke Itaya,* Masatoshi Morisue, Manabu Shimomichi, Masako Ozasa, Shigeyuki Shimizu and Satoshi Nakagawa
Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan

Abstract

An alternative synthesis of the key intermediate 8 for the synthesis of wybutine 1 has been attained through the Heck reaction between (S)- N-(methoxycarbonyl) vinylglycine 13 and 1-benzyl-7iodowye 7. The nucleoside version of this method using 7-iodo-3-(2,3,5-tri-O-acetyl- β-dribofuranosyl) wye 19, followed by catalytic hydrogenation, afforded a mixture of diastereoisomers 22 and 23. Separation of isomer 22 by means of high-performance liquid chromatography, followed successively by esterification and deprotection has accomplished the first synthesis of $3-(\beta-\mathrm{D}-$ ribofuranosyl)wybutine 3, which is the most probable structure for wybutosine isolated from phenylalanine transfer ribonucleic acids.

Wybutosine, one of the most highly modified members of more than 50 minor nucleosides of transfer ribonucleic acids, ${ }^{1}$ was first isolated in 1968 from the next position to the 3^{\prime}-end of the anticodon of phenylalanine transfer ribonucleic acids (tRNAs ${ }^{\text {Phe }}$) of baker's ${ }^{2}$ and brewer's yeasts. ${ }^{3}$ On mild treatment with acid, wybutosine releases the fluorescent base ${ }^{3}$ wybutine $1,{ }^{4}$ whose two-dimensional structure has been elucidated by Nakanishi's and Zachau's groups. ${ }^{5}$ The absolute configuration of wybutine 1 has been established by our chiral synthesis. ${ }^{6}$ The structure 1 is apparently a derivative of guanine, which has indeed been shown to be a precursor for the biosynthesis of the condensed tricyclic component of yeast tRNA ${ }^{\text {Phe }}{ }^{7}$ It follows that wybutosine should be a derivative of guanosine. Thus, 3-(β-D-ribofuranosyl)wybutine $\mathbf{3}$ has long been accepted as the most probable structure for wybutosine. Nevertheless, rigorous identification of wybutosine, especially the position of glycosylation and the structure of the sugar moiety, has had to await chemical synthesis because of the extremely minute amount available. We report here a full account of the first synthesis of compound $3 .{ }^{8}$

$$
\begin{aligned}
& 3 R=H \\
& 4 R=O H
\end{aligned}
$$

The only chiral synthesis of compound 1 has been accomplished by us through the Wittig reaction between 1-benzyl-7-formylwye 6 and (R)-\{2-carboxy-2-[(methoxycarbonyl)amino]ethyl\}triphenylphosphonium chloride as the key step (Scheme 1). ${ }^{6}$ Contrary to our expectation, the reaction at the nucleoside level using 7 -formyl-3-(2,3,5-tri- O-benzyl- β-Dribofuranosyl)wye ${ }^{9}$ did not afford the desired olefin. Among other possible reactions for an approach to compound $\mathbf{3}$, the Heck reaction ${ }^{10}$ warranted our attention. Being encouraged by recent reports on the Heck reaction at comparatively low

Scheme 1 Reagents: i, $\mathrm{POCl}_{3}, \mathrm{DMF}$; ii, $\mathrm{I}_{2}, \mathrm{NaHCO}_{3}$; iii, (R) -[2-carboxy-2-[(methoxycarbonyl)amino]ethyl]triphenylphosphonium chloride, $\mathrm{BuLi} ; \mathrm{iv}, \mathbf{1 3}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}, \mathrm{NaHCO}_{3} ; \mathrm{v}, \mathrm{Me}_{3} \mathrm{SiCHN}_{2}$, $\mathrm{MeOH} ; \mathrm{vi}, \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$
temperatures ${ }^{11}$ as well as by syntheses of optically active vinylglycine, ${ }^{12}$ we started with an alternative synthesis of compound 8 as a model experiment.

Results and Discussion

The requisite aryl iodide 7 was easily obtained by treatment of 1-benzylwye 5^{4} with iodine in dichloromethane in the presence of sodium hydrogen carbonate. As an olefinic unit, we preferred (S)- N-(methoxycarbonyl)vinylglycine 13 over its methyl ester because esters of N-protected β, γ-unsaturated amino acids are usually susceptible to isomerization ${ }^{12 a}$ and/or racemization ${ }^{6.13}$ under basic conditions. Methoxycarbonylation of (S)-vinylglycine hydrochloride ${ }^{12 b}$ followed by

Table 1 Heck reaction of iodide 19 with amido acid 13 at various temperatures

Reaction conditions	Yield $(\%)$ of compounds $\mathbf{2 0}$ and 21	$[\alpha]_{\mathrm{D}} / 10^{-1} \mathrm{deg} \mathrm{cm}$ $\left(\mathrm{g}^{-1}\right.$ $(c 0.20, \mathrm{MeOH})$ of $\mathbf{1}^{a}$	
Temp. $\left(T /{ }^{\circ} \mathrm{C}\right)$	Time (t / h)	21	-25
30	264	21	-32
45	24	37	-33
60	2	48	-32
0	0.7	39	

${ }^{a}$ Compound 1 was prepared from the mixture of butenoic acids 20 and 21 according to the procedure described in the text.
recrystallization three times from benzene gave compound 13 of 97% enantiomeric excess (ee).

The Heck reaction between substrates 7 and 13 was conducted according to Jeffery's procedure ${ }^{11 a}$ at $45^{\circ} \mathrm{C}$ to afford crude compound 8. Esterification of this product furnished diester 9 . Compound 9 of optical purity comparable to that of the sample from the Wittig reaction ${ }^{6}$ was obtained in 24% yield after recrystallization from methanol. No evidence was found for the formation of the Z-isomer of compound 8 . Although acidic ester $\mathbf{8}$ is amphoteric, an alternative, inner-salt structure can be ruled out on the basis of the similarity of the ${ }^{1} \mathrm{H}$ NMR spectrum to that of compound $9 .{ }^{6}$ We obtained starting material 5, and compounds 10 and 11 (9% yield) as by-products.

The correctness of the propenal structure 11 was established by an alternative synthesis from iodide 7 and acrolein. Because compound 8 was stable under conditions similar to those employed for its preparation,* we supposed that lactone $\mathbf{1 0}$ was formed competitively with compound 8 from the intermediate 12 through intramolecular nucleophilic attack of the carboxylate group on the γ-position and displacement of HPdX as shown in Scheme 2. Compound 11 might be formed through

the Heck reaction with compound 14 , which should be generated by oxidation of the glycine 13 with palladium(II). ${ }^{10}$ Indeed, the use of a stoicheiometric amount of palladium(II) acetate increased the yield of the propenal 11 up to 23%. As shown in Scheme 3, the electron-withdrawing acetoxy group would suppress the normal cis-elimination of HPd species from the intermediate 15, while it would leave to produce the palladium carboxylate 16. Decarboxylative elimination of

[^0]

Scheme 3 Reagents: i, $\operatorname{Pd}\left(\mathrm{OAc}_{2}\right.$; ii, ArPdX

HPdX from the salt 16 would then afford the carbamate 17, which should be hydrolysed to the propenal 11. The reaction's features depend largely on what solvent is used: replacement of DMF by acetonitrile afforded mainly compound 5 instead of monoester 8. We appreciate the present method of synthesis of compound $\mathbf{8}$ over our previous one ${ }^{6}$ from the viewpoints of experimental facility, yield, and reproducibility. \dagger

Having secured an alternative synthesis of the key intermediate 8, we turned to the Heck reaction at the nucleoside level. The substrate we adopted was the protected nucleoside 19 rather than the unprotected one in view of its solubility in organic solvents and the stability of the glycosyl bond. ${ }^{15}$ Compound $19 \ddagger$ was produced in 97% yield by iodination of compound $18^{9.17}$ in a manner similar to that employed for the preparation of compound 7. The Heck reaction between substrates 19 and 13 was conducted at $45^{\circ} \mathrm{C}$ under conditions similar to those employed for the model experiment to afford the desired product as a glass in 37% yield (Scheme 4). This product was suggested to be a mixture of the diastereoisomers 20 and 21 by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Partial epimerization at the amino acid moiety was confirmed by means of the specific rotation after the products were transformed into wybutine $1 .{ }^{6}$ The results summarized in Table 1 indicate that the reaction at $\sim 60^{\circ} \mathrm{C}$ gave the maximum yield of the diastereoisomeric mixture although it offered no advantages in diastereoisomeric excess (de). Variation of reaction time at $60^{\circ} \mathrm{C}$ also did not affect the isomer ratio. All attempts to separate the diastereoisomers by medium-pressure column, flash or thin-layer chromatography (TLC) using silica gel, octylated or octadecylated silica gel went unrewarded. Similar efforts to separate them after they were converted into a mixture of aminobutanoates 22 and 23 or a mixture of diesters 24 and 25 were unsuccessful. Enzymic hydrolysis might have a chance of separating these diastereoisomers. As had been reported, ${ }^{18}$ (S)- N-(methoxycarbonyl)alanine stereospecifically underwent hydrolysis catalysed by acylase I at pH 7.0 and $38^{\circ} \mathrm{C}$. Neither S-diastereoisomer 20 nor 22, however, underwent hydrolysis under these conditions. We expected that they might be digested if the methoxycarbonyl group were to be replaced by an acetyl group. Unfortunately, the Heck reaction of iodide 19 with N-acetylvinylglycine ${ }^{19}$ took place only slowly at $60^{\circ} \mathrm{C}$ and afforded a mixture too complex

[^1]

22

24

23

25
$R=2,3,5-$ tri- - -acetyl- β-o-ribofuranosyl
Scheme 4 Reagents: i, $\mathrm{I}_{2}, \mathrm{NaHCO}_{3} ;$ ii, 13, $\mathrm{Pd}\left(\mathrm{OAc}_{2}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}\right.$, NaHCO_{3}; iii. $\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$; iv, $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}, \mathrm{MeOH}$
to allow recognition of the presence of the desired olefin. When the reaction was conducted with vinylglycine hydrochloride, the iodide 19 was rapidly reduced to its precursor 18 (62% yield).

Getting these discouraging results, we finally focused our efforts on separation of the diastereoisomeric mixture of compounds 20 and 21 by high-performance liquid chromatography (HPLC). The columns tested were of silica gel, octylated silica gel and octadecylated silica gel. Partial separation was achieved only when a column of octadecylated silica gel was used. The best result was obtained when acetonitrile $-0.02 \mathrm{~mol} \mathrm{dm}{ }^{3}$ aq. sodium dihydrogen phosphate ($85: 15, v / v$) was used as eluent. The separation depended largely on the concentration of the phosphate salt. Thus, we obtained isomers $20(6 \mathrm{mg})$ and $21(2 \mathrm{mg})$ through a 30 mg injection of the isomeric mixture onto a semi-preparative column (column diameter, 10 mm) using a recycling mode. Successful separation of S-isomer 20 is noteworthy because we envisage this compound as a key intermediate for access to compound $4,{ }^{20}$ the most probable structure for the fluorescent nucleoside of rat liver $\mathrm{tR} \mathrm{NA}^{\text {Phe }}$.

Catalytic hydrogenation of butenoic acids 20 and 21 over palladium on carbon gave the butanoic acids 22 and 23, respectively. These two were more easily separable by HPLC. We thus obtained pure S-isomer 22 in 22% and R-isomer 23 in 8% yield based on iodide 19 . These were separately led to
diesters 24 and 25 in the usual manner in quantitative yields. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of diastereoisomers 24 and 25 with those of monoesters 22 and 23 support the nondissociative structures for these carboxylic acids. Deacetylation of S-isomer 24 by short treatment with sodium methoxide in methanol* accomplished the synthesis of stereochemically pure compound 3 for the first time. The structure of compound 3 thus obtained was supported by the self-consistent synthetic route through which it was obtained, the reasonable ${ }^{1} \mathrm{H}$ NMR spectrum, and the mild hydrolysis that afford optically pure wybutine $1 .{ }^{6}$

In conclusion, we have accomplished the first synthesis of compound 3 by utilising the Heck reaction as the key step. Although the lack of a sample of wybutosine prevents the establishment of its ultimate structure at present, the present synthesis of compound 3 should help toward the efficient isolation and identification of wybutosine.

Experimental

All m.p.s were determined by using a Yamato MP-1 or Büchi 530 capillary melting point apparatus and are corrected. UV and mass spectra were recorded on a Hitachi 320 UV spectrophotometer and a Hitachi M-80 mass spectrometer. NMR spectra were measured with JEOL JNM-FX-100, JEOL JNM-EX-270 and JEOL JNM-GX-400 NMR spectrometers. Unless otherwise stated, they were recorded at 100 MHz and $25^{\circ} \mathrm{C}$ in CDCl_{3} with tetramethylsilane as internal standard; J values are given in Hz . Optical rotations were measured with a JASCO DIP-181 polarimeter using a 1 dm sample tube and are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. The HPLC system was a Waters model 204 ALC which included a 6000A pump, a U6K injector and a model 440 absorbance detector operating at 254 nm . Elemental analyses were performed by Mr. Y. Itatani and his associates at Kanazawa University. Pre-coated silica gel plates with a fluorescent indicator (Merck) were used for analytical $(0.25 \mathrm{~mm})$ and preparative (0.5 mm) TLC (PLC). Flash chromatography was performed according to the reported procedure. ${ }^{21}$ The pHs were measured roughly using Universal test papers (Toyo Roshi Co.).
(S)-2-[(Methoxycarbonyl)amino]but-3-enoic Acid 13.-(S)-2-[(Benzyloxycarbonyl)amino]but-3-enoic acid methyl ester ${ }^{12 b}$ $(1.50 \mathrm{~g}, 6 \mathrm{mmol})$ was hydrolysed with $6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid ${ }^{12 a}$ to afford (S)-vinylglycine hydrochloride ($550 \mathrm{mg}, 66 \%$), m.p. $158-159^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}^{15}+77.8$ (c 0.500 , water). A mixture of the whole amount of this product, sodium hydrogen carbonate ($1.55 \mathrm{~g}, 18.4 \mathrm{mmol}$), methyl chloroformate $(0.68 \mathrm{~g}, 7.2 \mathrm{mmol})$ and water $\left(50 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h . The resulting solution was brought to pH 1 with 10% hydrochloric acid and was then extracted with dichloromethane using a continuous extractor for 8 h . The extracts were dried over magnesium sulfate and concentrated under reduced pressure to leave title compound $13(618 \mathrm{mg}$, 65%) as a solid. Recrystallization of crude acid 13 three times from benzene gave scales ($355 \mathrm{mg}, 37 \%$), m.p. $92-93^{\circ} \mathrm{C}$; $[\alpha]_{365}^{17}$ $+59.6(c 0.504, \mathrm{MeOH})$. Further recrystallization from benzene gave an analytical sample of acid 13 with unchanged melting point (Found: $\mathrm{C}, 45.2 ; \mathrm{H}, 5.6 ; \mathrm{N}, 8.8 . \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4}$ requires $\mathrm{C}, 45.3$; $\mathrm{H}, 5.7 ; \mathrm{N}, 8.8 \%) ;[\alpha]_{365}^{14}+59.7(c 0.200, \mathrm{MeOH}) ; \delta_{\mathrm{H}}[270 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO} \mathrm{C}_{2} \mathrm{H}\right), 5.20$ (1 H, ddd, $J 1.7,1.3$ and 10.2) and $5.31(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and 17) (together $\mathrm{CH}_{2}=$), $5.91\left(1 \mathrm{H}\right.$, ddd, $J 5.9,10.2$ and $\left.17, \mathrm{CH}_{2}=\mathrm{CH}\right)$,

[^2]$7.27(0.1 \mathrm{H}$, br) and $7.67(0.9 \mathrm{H}, \mathrm{d}, J 7.6)$ (together NH$) *$ and $12.76\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{H}\right)$. Optical purity of this sample was determined to be 97% ee by means of chiral HPLC according to the reported procedure. ${ }^{19}$

1-Benzyl-7-iodo-4,6-dimethyl-4,9-dihydro-1H-imidazo[1,2-a]-purin-9-one 7.-Compound $5^{4}(6.68 \mathrm{~g}, 22.8 \mathrm{mmol})$ was iodinated in a manner similar to that described below for the preparation of the nucleoside 19 to afford title compound 7 (7.54 $\mathrm{g}, 79 \%$) as scales, m.p. $\sim 160^{\circ} \mathrm{C}$ (decomp.; from ethanol). Further recrystallization from ethanol gave an analytical sample with unchanged m.p. (Found: $\mathrm{C}, 45.9 ; \mathrm{H}, 3.3 ; \mathrm{N}, 16.8 \%$; $\mathrm{M}^{+}, 419 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{IN}_{5} \mathrm{O}$ requires $\mathrm{C}, 45.8 ; \mathrm{H}, 3.4 ; \mathrm{N}, 16.7 \%$; M, 419) ; $\lambda_{\text {max }}(95 \% \mathrm{EtOH}) / \mathrm{nm} 244\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 34400\right)$, 260sh (7200) and $319(5500) ; \delta_{\mathrm{H}} 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.90(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}), 5.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.36(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $7.63(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.

7-Iodo-4,6-dimethyl-3-(2,3,5-tri-O-acetyl- β-D-ribofuranosyl)-4,9-dihydro-3H-imidazo[1,2-a] purin-9-one 19.-A solution of iodine ($1.07 \mathrm{~g}, 4.22 \mathrm{mmol}$) in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred mixture of compound $18{ }^{9,17}(1.60 \mathrm{~g}$, 3.47 mmol), sodium hydrogen carbonate ($2.94 \mathrm{~g}, 35 \mathrm{mmol}$), dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ and water $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature over a period of 30 min . The mixture was stirred for a further 40 min , washed successively with water $\left(2 \times 50 \mathrm{~cm}^{3}\right)$, 5% aq. sodium thiosulfate ($50 \mathrm{~cm}^{3}$) and water ($50 \mathrm{~cm}^{3}$), dried over magnesium sulfate, and then concentrated under reduced pressure to leave slightly brown needles ($1.97 \mathrm{~g}, 97 \%$), m.p. 140$141^{\circ} \mathrm{C}$ (decomp.). Recrystallization of crude iodide 19 from ethanol gave an analytical sample as needles, m.p. $145-146{ }^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 40.6 ; \mathrm{H}, 3.8 ; \mathrm{N}, 11.7 \% ; \mathrm{M}^{+}, 587$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{IN}_{5} \mathrm{O}_{8}$ requires $\mathrm{C}, 40.9 ; \mathrm{H}, 3.8 ; \mathrm{N}, 11.9 \% ; \mathrm{M}, 587$); $[\alpha]_{\mathrm{D}}^{23}$ $-23.4(c 0.522, \mathrm{MeOH}) ; \lambda_{\max }(95 \% \mathrm{EtOH}) / \mathrm{nm} 242\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1} 29600\right), 278(6500)$ and $297(6800) ; \delta_{\mathrm{H}} 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $2.18(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ac}), 2.28(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 4.14(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $4.30\left(2 \mathrm{H}, \mathrm{d}, J 3,5^{\prime}-\mathrm{H}_{2}\right), 4.49\left(1 \mathrm{H}, \mathrm{dt}, J 3.5\right.$ and $\left.3,4^{\prime}-\mathrm{H}\right), 5.48$ $\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $\left.5,3^{\prime}-\mathrm{H}\right), 5.89\left(1 \mathrm{H}\right.$, dd, $J 5$ and $\left.6,2^{\prime}-\mathrm{H}\right), 6.23$ ($\left.1 \mathrm{H}, \mathrm{d}, J 6,1^{\prime}-\mathrm{H}\right)$ and $7.64(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.
(E)-3-(1-Benzyl-4,6-dimethyl-9-oxo-4,9-dihydro-1H-imidazo-[1,2-a] purin-7-yl)propenal 11 .-Acrolein ($116 \mathrm{mg}, 2.07 \mathrm{mmol}$) was added to a mixture of iodide $7(422 \mathrm{mg}, 1.01 \mathrm{mmol})$, palladium(II) acetate $(7.1 \mathrm{mg}, 0.032 \mathrm{mmol})$, sodium hydrogen carbonate ($262 \mathrm{mg}, 3.12 \mathrm{mmol}$), a $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{TBACl}$ solution in DMF $\left(6.6 \mathrm{~cm}^{3}, 0.99 \mathrm{mmol}\right)$, and DMF $\left(10 \mathrm{~cm}^{3}\right)$. The whole was stirred at room temperature for 24 h and then at $30^{\circ} \mathrm{C}$ for a further 55 h . After water $\left(40 \mathrm{~cm}^{3}\right)$ had been added, the resulting mixture was extracted with chloroform (4×40 cm^{3}). The organic layers were combined, dried over magnesium sulfate, and concentrated under reduced pressure to leave a brown oil $(0.59 \mathrm{~g})$. This was purified by flash chromatography. The column was first eluted with ethyl acetate and then with chloroform-methanol ($19: 1, \mathrm{v} / \mathrm{v}$) to afford starting material 7 (0.14 g recovery) and a mixture of compounds 7 and 11 (0.30 g). The mixture was again purified by flash chromatography [benzene-ethyl acetate-ethanol ($8: 8: 1, \mathrm{v} / \mathrm{v}$)] to afford a second crop of starting material $7(0.06 \mathrm{~g}$; the total recovery was 47%), a mixture of compounds 7 and $11(0.08 \mathrm{~g})$, and title compound $11(0.12 \mathrm{~g})$. The mixture was further purified by flash chromatography using the same solvent to provide a second crop of compound 11 (0.04 g ; the total yield was 46%). Recrystallization of crude compound $\mathbf{1 1}$ from ethanol afforded an analytical sample as yellow needles, m.p. $247-247.5^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 65.6 ; \mathrm{H}, 4.7 ; \mathrm{N}, 20.2 \% ; \mathrm{M}^{+}, 347$.

* The observed pattern of the NH signal is probably due to cis-trans isomerism caused by restricted rotation about the central $\mathrm{C}-\mathrm{N}$ bond in the carbamate group. ${ }^{19}$
$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 4.9 ; \mathrm{N}, 20.2 \% ; \mathrm{M}, 347$); $\lambda_{\text {max }}(95 \% \mathrm{EtOH}) / \mathrm{nm} \dagger 239,260$ and $367 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.53$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.97(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 5.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.40(1 \mathrm{H}$, dd, J 16.2 and $7.6,=\mathrm{CHCHO}), 7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.74$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.86(1 \mathrm{H}, \mathrm{d}, J 16.2, \mathrm{C} H=\mathrm{CHCHO})$ and $9.62(1 \mathrm{H}$, d, $J 7.6, \mathrm{CHO}$).
(S)-(E)-4-(1-Benzyl-4,6-dimethyl-9-oxo-4,9-dihydro-1Himidazo $[1,2-\mathrm{a}]$ purin-7-yl) $-2-[($ methoxycarbonyl $)$ amino $] b u t-3-$ enoic Acid 8.-The iodide $7(126 \mathrm{mg}, 0.3 \mathrm{mmol})$, sodium hydrogen carbonate ($76 \mathrm{mg}, 0.9 \mathrm{mmol}$) and a $0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of TBACl $\left(1.5 \mathrm{~cm}^{3}, 0.3 \mathrm{mmol}\right)$ in DMF were added to a solution of palladium(II) acetate ($2.5 \mathrm{mg}, 0.011 \mathrm{mmol}$) in DMF $\left(3 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $45^{\circ} \mathrm{C}$ for 10 min . The olefin 13 ($57 \mathrm{mg}, 0.36 \mathrm{mmol}$) was then added to the mixture and the whole was stirred at $45^{\circ} \mathrm{C}$ for 24 h . The resulting slightly brown solution was diluted with water $\left(15 \mathrm{~cm}^{3}\right)$, brought to pH 3-4 with 10% aq. phosphoric acid and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried over magnesium sulfate and concentrated under reduced pressure to leave a brown glass $(0.26 \mathrm{~g})$. This was purified by flash chromatography [chloroform-methanolwater ($20: 7: 1, v / v$)]. Fractions containing a polar substance were combined, and concentrated under reduced pressure to $\sim 5 \mathrm{~cm}^{3}$. The residue was brought to $\mathrm{pH} 3-4$ with $10 \% \mathrm{aq}$. phosphoric acid and extracted with dichloromethane (3×10 cm^{3}). The extracts were dried over magnesium sulfate and concentrated under reduced pressure to leave title compound $\mathbf{8}$ as a yellowish amorphous solid (54 mg). The ${ }^{1} \mathrm{H}$ NMR spectrum $\left[\delta_{\mathrm{H}} 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89\right.$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $5.08(1 \mathrm{H}, \mathrm{br}, \alpha-\mathrm{H}), 5.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.84$ ($1 \mathrm{H}, \mathrm{dd}, J 6$ and $16, \beta-\mathrm{H}), 7.33$ ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 7.63 ($1 \mathrm{H}, \mathrm{d}, J 16$, $\gamma-\mathrm{H})$ and $7.64(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ indicated that this sample was contaminated with a tetrabutylammonium halide to the extent of $\sim 20 \mathrm{~mol} \%$.

The earlier fractions containing several products were combined, and concentrated under reduced pressure to give a caramel (0.09 g). This was purified by flash chromatography [chloroform-methanol ($30: 1, \mathrm{v} / \mathrm{v}$)] and the crude material $(0.04 \mathrm{~g})$ obtained from the earlier fractions was purified by repeated PLC on silica gel [1,2-dichloroethane-ethanol (10:1, $\mathrm{v} / \mathrm{v})$] to afford crude compound $11(9 \mathrm{mg}, 9 \%)$ as a higher- R_{f} substance, and compound $5(18 \mathrm{mg}, 20 \%)$. Recrystallization of compound 11 from ethanol gave yellowish needles, m.p. $240^{\circ} \mathrm{C}$ (decomp.), identical (${ }^{1} \mathrm{H}$ NMR) with an authentic sample described above.

From the polar fractions of the second flash chromatography a fluorescent substance ($17 \mathrm{mg}, 13 \%$) was obtained as a slightly yellow glass, $\delta_{\mathrm{H}} 2.35(3 \mathrm{H}$, s, overlapped with a one-proton multiplet due to one of $\left.3^{\prime}-\mathrm{H}_{2}, \mathrm{CMe}\right), 3.01\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.3^{\prime}-\mathrm{H}_{2}\right)$, 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 4.85 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), 5.48 and $5.60(1 \mathrm{H}$ each, d$, J 15, \mathrm{PhCH} 2), 5.81(1 \mathrm{H}, \mathrm{dd}, J 8.5$ each, $\left.2^{\prime}-\mathrm{H}\right), 7.34(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $7.73(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum suggested that this was a single diastereoisomer of 1-benzyl-7-\{4-[(methoxycarbonyl)amino]-5-oxotetrahydro-furan-2-yl\}-4,6-dimethyl-4,9-dihydro-1 H -imidazo[1,2-a]purin9 -one 10. Further purification of this compound was unsuccessful because of its instability.

[^3](S)-(E)-4-(1-Benzyl-4,6-dimethyl-9-oxo-4,9-dihydro-1H-imidazo[1,2-a $]$ purin-7-yl)-2-[(methoxycarbonyl)amino]but-3enoic Acid Methyl Ester 9.-Crude acid 8 (47 mg) described above was dissolved in benzene-methanol (7:2, v/v; $7 \mathrm{~cm}^{3}$). A $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of trimethylsilyldiazomethane ${ }^{22}(0.7$ cm^{3}) was added to the solution, followed by addition of acetic acid (one drop) after 1.5 min . The resulting solution was concentrated under reduced pressure to leave diester 9 as a yellowish solid. Recrystallization of crude product 9 from methanol afforded slightly yellow needles ($30 \mathrm{mg}, 24 \%$ based on aldehyde 6), m.p. $176-178^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{14}+47.7$ (c 0.373 , $\mathrm{MeOH})$. This sample was identical (${ }^{1} \mathrm{H}$ NMR and IR spectra, and chromatographic behaviour) with an authentic sample. ${ }^{6}$

The Heck Reaction between Iodide 19 and Compound 13 at $45^{\circ} \mathrm{C}$.-The iodide $19(294 \mathrm{mg}, 0.5 \mathrm{mmol})$, sodium hydrogen carbonate ($126 \mathrm{mg}, 1.5 \mathrm{mmol}$) and a $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of TBACl in DMF ($2.5 \mathrm{~cm}^{3}, 0.5 \mathrm{mmol}$) were added to a solution of palladium(II) acetate ($4.8 \mathrm{mg}, 0.022 \mathrm{mmol}$) in DMF $\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $45^{\circ} \mathrm{C}$ for 10 min . The olefin 13 $(96 \mathrm{mg}, 0.6 \mathrm{mmol})$ was then added to the mixture and the whole was stirred at $45^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was brought to $\mathrm{pH} 3-4$ by addition of water $\left(10 \mathrm{~cm}^{3}\right)$ and 10% aq. phosphoric acid, and was then extracted with dichloromethane $\left(4 \times 10 \mathrm{~cm}^{3}\right)$. The organic phases were dried over magnesium sulfate and concentrated under reduced pressure to leave a brown oil $(0.69 \mathrm{~g})$. This was purified by flash chromatography [chloroform-methanol-water ($20: 7: 1, \mathrm{v} / \mathrm{v}$)]. The fractions containing polar substances were combined and concentrated to $\sim 10 \mathrm{~cm}^{3}$. This was brought to $\mathrm{pH} 3-4$ with aq. phosphoric acid and extracted with dichloromethane $\left(7 \times 15 \mathrm{~cm}^{3}\right)$. The organic phases were combined, dried over magnesium sulfate, and concentrated under reduced pressure to leave a mixture of diastereoisomers 20 and 21 as a slightly yellow glass $(115 \mathrm{mg}$, 37%). Catalytic hydrogenation of the mixture, followed successively by methylation, deacetylation and acidic hydrolysis in the manner similar to those described below, afforded compound $1,[\alpha]_{\mathrm{D}}^{13}-32(c 0.204, \mathrm{MeOH})\left\{\right.$ lit. ${ }^{6}[\alpha]_{\mathrm{D}}^{23}$ $-45(c 0.130, \mathrm{MeOH})\}$.

The earlier fraction ($30 \mathrm{~cm}^{3}$) of the eluate, which contained all of the less polar products, was concentrated to a small volume and extracted with dichloromethane. The organic phase was dried over magnesium sulfate and concentrated to leave a brown oil (101 mg). This was purified by flash chromatography [chloroform-methanol (19:1, v/v)]. The last eluate contained highly fluorescent substances (16 mg) with the same R_{f}-value. The NMR spectrum suggested that they were diastereoisomers of 7-\{4-[(methoxycarbonyl)amino]-5-oxotetrahydrofuran-2yl $\}$-4,6-dimethyl-3-(2,3,5-tri- O-acetyl- β-D-ribofuranosyl)-4,9-dihydro- 3 H -imidazol $[1,2-a]$ purin- 9 -one, $\delta_{\mathrm{H}} 2.07,2.11,2.13$, 2.16 and 2.17 (a total of 9 H , each s, $3 \times \mathrm{Ac}$), 2.29 and 2.33 (a total of 3 H , each $\mathrm{s}, 6-\mathrm{Me}), 2.4-3.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of the tetrahydrofuran ring), 3.71 and 3.72 (a total of 3 H , each s , OMe), 4.14 (3 H, s, NMe), $4.34\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 4.51\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), 4.6-5.1 (1 H, m, CHNH), $5.47\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.7-6.1(2 \mathrm{H}$, m, OCH of the tetrahydrofuran ring and $\left.2^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{d}, J 5$, $\left.1^{\prime}-\mathrm{H}\right)$ and $7.73(1 \mathrm{H}$, br s, 2-H). The earlier fractions showed two major spots on a silica gel plate [chloroform-methanol (19:1, $\mathrm{v} / \mathrm{v})$]. These compounds were further purified by PLC on silica gel (the same solvent). The higher- R_{f} compound, isolated as a yellowish glass (17 mg), was the starting material 19. From the lower- R_{f} zone a yellow glass (31 mg) was obtained and it was suggested by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be an almost equimolar mixture of compound 18 and (E)-3-\{4,6-dimethyl-9-oxo-3-(2,3,5-tri- O -acetyl- β-d-ribofuranosyl)-4,9-dihydro- 3 H imidazo $[1,2-a$]purin-7-yl $\}$ propenal, $\delta_{\mathrm{H}} 2.10,2.17$ and 2.18 (a total of $9 \mathrm{H}, 3 \times \mathrm{Ac}), 2.46(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$,
$4.31\left(2 \mathrm{H}, \mathrm{d}, J 3,5^{\prime}-\mathrm{H}_{2}\right), 4.51\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{dd}, J 5$ and $\left.4,3^{\prime}-\mathrm{H}\right), 5.93\left(1 \mathrm{H}\right.$, dd, $J 5$ and $\left.6,2^{\prime}-\mathrm{H}\right), 6.28\left(1 \mathrm{H}, \mathrm{d}, J 6,1^{\prime}-\right.$ H), $6.35(1 \mathrm{H}$, dd, $J 16$ and $8,=\mathrm{CHCHO}), 7.75(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.80$ ($1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{CH}=\mathrm{CHCHO})$ and $9.61(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO})$.
(S)-(E)- 20 and (R)-(E)-4-\{4,6-Dimethyl-9-oxo-3-(2,3,5-tri-O-acetyl- β-D-ribofuranosyl)-4,9-dihydro-3H-imidazo[1,2-a]purin-$7-y l\}-2-[($ methoxycarbonyl $)$ amino $]$ but-3-enoic Acid 21.-Compound $19(587 \mathrm{mg}, 1 \mathrm{mmol})$ was allowed to react with compound $13(239 \mathrm{mg}, 1.5 \mathrm{mmol})$ in the presence of palladium(II) acetate ($8.3 \mathrm{mg}, 0.037 \mathrm{mmol}$), a $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of TBACl in DMF $\left(6.7 \mathrm{~cm}^{3}, 1 \mathrm{mmol}\right)$, sodium hydrogen carbonate ($252 \mathrm{mg}, 3 \mathrm{mmol}$) and DMF ($8 \mathrm{~cm}^{3}$) in a manner similar to that described above except at $60^{\circ} \mathrm{C}$ for 7.5 h to afford a mixture of diastereoisomers 20 and 21 ($310 \mathrm{mg}, 50 \%$) as a slightly yellow foam. A portion (60 mg) of this sample was further purified by PLC on silica gel [chloroform-methanolwater (20:7:1, v/v)], followed by addition of water $\left(8 \mathrm{~cm}^{3}\right)$ and 10% aq. phosphoric acid to pH 3 . The whole was extracted with dichloromethane $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The organic phases were dried over magnesium sulfate and concentrated under reduced pressure to leave a slightly yellow glass (51 mg). A portion (10 mg) of this sample was dissolved in a mixture of $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. sodium dihydrogen phosphate and acetonitrile ($2: 1, \mathrm{v} / \mathrm{v}$) $\left(0.75 \mathrm{~cm}^{3}\right)$. The solution was submitted to preparative HPLC in one portion and the column [Hibar RT 250-10 LiChrosorb RP-18 $(7 \mu \mathrm{~m})$] was eluted with $0.02 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. sodium dihydrogen phosphate-acetonitrile $(85: 15, \mathrm{v} / \mathrm{v})$ at the flow rate of $4.4 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The first portion ($4.4 \mathrm{~cm}^{3}$) of the eluate containing isomer $\mathbf{2 0}$ and the last portion having absorbance <2 were collected separately. The rest of the eluate was recycled through the column. Shaving of the head and the tail parts was repeated during each cycle until complete separation was attained. After six more recycling operations, all the fractions containing isomer $\mathbf{2 0}$ were combined, and concentrated under reduced pressure to $\sim 20 \mathrm{~cm}^{3}$, brought to pH 3 with 10% aq. phosphoric acid, and extracted with dichloromethane $(3 \times 10$ cm^{3}). The organic layers were combined, dried over magnesium sulfate, and concentrated under reduced pressure to leave pure S-isomer $20(6 \mathrm{mg})$ as a glass, $\delta_{\mathrm{H}} 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.21(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{Ac}), 2.30(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.13(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}), 4.28\left(2 \mathrm{H}, \mathrm{br}, 5^{\prime}-\mathrm{H}_{2}\right), 4.48\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.32(2 \mathrm{H}, \mathrm{br}, \alpha-$ H and $\left.\mathrm{CO}_{2} \mathrm{H}\right), 5.48\left(1 \mathrm{H}\right.$, dd, $J 4$ and $\left.5,3^{\prime}-\mathrm{H}\right), 5.70(1 \mathrm{H}, \mathrm{d}, J 8$, NH), $6.01(1 \mathrm{H}$, dd, $J 6$ and $16, \beta-\mathrm{H}), 6.07\left(1 \mathrm{H}\right.$, dd, $J 5$ and $6,2^{\prime}-$ $\mathrm{H}), 6.29\left(1 \mathrm{H}, \mathrm{d}, J 6,1^{\prime}-\mathrm{H}\right), 7.43(1 \mathrm{H}, \mathrm{d}, J 16, \gamma-\mathrm{H})$ and $7.53(1$ H, s, 2-H).

Similar treatment of the eluate containing the R-isomer 21 afforded the pure compound $(2 \mathrm{mg})$ as a glass, $\delta_{\mathrm{H}} 2.14(6 \mathrm{H}$, s, $2 \times \mathrm{Ac}), 2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.29(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.85(3 \mathrm{H}, \mathrm{s}$, OMe), $4.19(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.32\left(2 \mathrm{H}, \mathrm{br}, 5^{\prime}-\mathrm{H}_{2}\right), 4.50\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), $5.25\left(2 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{H}\right), 5.50\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.95(1 \mathrm{H}$, dd, $J 5$ and $16, \beta-\mathrm{H}), 6.05\left(1 \mathrm{H}\right.$, dd, $J 6$ each, $\left.2^{\prime}-\mathrm{H}\right), 6.32(1 \mathrm{H}, \mathrm{d}$, $\left.J 6,1^{\prime}-\mathrm{H}\right), 6.88(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.54(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $7.59(1 \mathrm{H}, \mathrm{d}$, $J 6, \gamma-H)$.
(S)-4-\{ α - $[($ Methoxycarbonyl $)$ amino $]-4,6-$ dimethyl-9-oxo-3-(2,3,5-tri-O-acetyl- β-D-ribofuranosyl)-4,9-dihydro-3H-imidazo[1,2-a] purin-7-yl\}butanoic Acid 22.--Compound 20 (8 $\mathrm{mg}, 0.013 \mathrm{mmol})$ was hydrogenated in methanol $\left(3 \mathrm{~cm}^{3}\right)$ over 10% palladium on carbon $(8 \mathrm{mg})$ at room temperature for 6 h . The catalyst was removed by filtration and the filtrate was concentrated. The residue was purified by PLC on silica gel [chloroform-methanol-water (20:7:1, v/v)] and dissolved in water $\left(10 \mathrm{~cm}^{3}\right)$. The solution was brought to pH 3 by addition of 10% aq. phosphoric acid and was then extracted with dichloromethane $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The organic layers were combined, dried over magnesium sulfate, and concentrated to afford title compound $22(6 \mathrm{mg}, 75 \%)$ as a solid. This sample was
identical (${ }^{1} \mathrm{H}$ NMR and HPLC) with that obtained by separation of a mixture of diastereoisomers 22 and 23 (vide infra).
(R)-4-\{ $\alpha-[($ Methoxycarbonyl)amino $]-4,6$-dimethyl-9-oxo-3-(2,3,5-tri-O-acetyl- β-D-ribofuranosyl)-4,9-dihydro-3H-imidazo-[1,2-a]purine-7-yl $\}$ butanoic Acid 23.-Hydrogenation of compound $21(2 \mathrm{mg}, 0.003 \mathrm{mmol})$ was conducted in a manner similar to that described for the preparation of S-isomer 22 to afford the R-diastereoisomer $23(1.8 \mathrm{mg})$ as a glass, identical (${ }^{1} \mathrm{H}$ NMR and HPLC) with a sample of compound 23 obtained by separation of a mixture of diastereoisomers $\mathbf{2 2}$ and 23 (vide infra).

Separation of a Mixture of Diastereoisomers 22 and 23.-A solution of the mixture (250 mg) of compounds 20 and 21 , which was obtained in the Heck reaction at $60^{\circ} \mathrm{C}$ (vide supra), in methanol ($15 \mathrm{~cm}^{3}$) was hydrogenated over 10% palladium on carbon (250 mg) at room temperature and atmospheric pressure for 2 h , followed by filtration. The catalyst was washed with hot methanol $\left(50 \mathrm{~cm}^{3}\right)$. The filtrate and washings were combined, and concentrated under reduced pressure to afford a mixture of diastereoisomers 22 and 23 ($231 \mathrm{mg}, 92 \%$) as a slightly yellow glass. A portion (212 mg) of this sample was dissolved in $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq}$. sodium dihydrogen phosphateacetonitrile $(85: 15, \mathrm{v} / \mathrm{v})\left(2.5 \mathrm{~cm}^{3}\right)$. This solution was applied to the HPLC system as described for the separation of diastereoisomers 20 and 21 in six portions. The earliest part of the eluate ($30 \mathrm{~cm}^{3}$) containing S-isomer 22 was withdrawn and the rest was recycled through the column. During the second and the third cycles, the head eluates ($65 \mathrm{~cm}^{3}$ each) containing S-isomer 22 were collected. Complete separation was obtained after the fourth cycle. All the fractions containing S-isomer 22 were combined, and concentrated under reduced pressure to $\sim 20 \mathrm{~cm}^{3}$. The resulting aqueous solution was extracted with dichloromethane ($3 \times 20 \mathrm{~cm}^{3}$) after being brought to pH 3 with 10% aq. phosphoric acid. The organic layers were combined, dried over magnesium sulfate, and concentrated under reduced pressure to leave S-isomer 22 ($101 \mathrm{mg}, 22 \%$ based on iodide 19) as a solid, m.p. 155-158 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.9\left(2 \mathrm{H}, \mathrm{br}, \beta-\mathrm{H}_{2}\right)$, $1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.08$ [$3 \mathrm{H}, \mathrm{s}$ (sharpened on irradiation at $\delta 3.05$), $6-\mathrm{Me}$], 2.10 and 2.11 (a total of $6 \mathrm{H}, 2 \times \mathrm{Ac}), 3.05(2 \mathrm{H}, \mathrm{m}$, $\left.\gamma-\mathrm{H}_{2}\right), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $4.32\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 4.45\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.46(1 \mathrm{H}, \mathrm{dd}, J 5$ and $\left.6,3^{\prime}-\mathrm{H}\right), 5.84\left(1 \mathrm{H}\right.$, dd, $J 6$ and $\left.5,2^{\prime}-\mathrm{H}\right), 6.43(1 \mathrm{H}, \mathrm{d}, J 5$, $\left.1^{\prime}-\mathrm{H}\right), 7.48(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{NH}), 8.14(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $12.45(1$ $\left.\mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{H}\right)$.
The eluates containing R-isomer 23 were combined, concentrated under reduced pressure to $\sim 10 \mathrm{~cm}^{3}$, brought to pH 3 with 10% aq. phosphoric acid, and then extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$). The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to leave R-isomer 23 as a glass ($37 \mathrm{mg}, 8 \%$ yield based on iodide 19), $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.9\left(2 \mathrm{H}, \mathrm{br}, \beta-\mathrm{H}_{2}\right)$, $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.10$ and 2.11 (a total of $9 \mathrm{H}, 2 \times \mathrm{Ac}$ and $6-\mathrm{Me}), 3.05\left(2 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{H}_{2}\right), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(1 \mathrm{H}, \mathrm{m}$, $\alpha-\mathrm{H}), 4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.32\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 4.43\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), $5.45\left(1 \mathrm{H}\right.$, dd, $J 5$ and $\left.6,3^{\prime}-\mathrm{H}\right), 5.83\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.5,2^{\prime}-\mathrm{H}\right)$, $6.41\left(1 \mathrm{H}, \mathrm{d}, J 5,1^{\prime}-\mathrm{H}\right), 7.47(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{NH}), 8.14(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $12.36\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{H}\right)$.
(S)-4-\{ $\{\alpha-[($ Methoxycarbonyl $)$ amino $]-4,6$-dimethyl-9-oxo-3-(2,3,5-tri-O-acetyl- β-D-ribofuranosyl)-4,9-dihydro-3H-imidazo-[1,2-a] purin-7-yl \}butanoic Acid Methyl Ester 24.-Compound 22 ($69 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in methanolbenzene ($2: 7, \mathrm{v} / \mathrm{v}$) $\left(0.5 \mathrm{~cm}^{3}\right)$ and then a $1.8 \mathrm{~mol} \mathrm{dm}^{-3}$ trimethylsilyldiazomethane ${ }^{22}$ solution in hexane $\left(0.1 \mathrm{~cm}^{3}\right)$ was added. The resulting solution was concentrated under reduced pressure to leave ester $24(71 \mathrm{mg}, 100 \%)$ as a foam, $\delta_{\mathrm{H}} 1.89$
$(1 \mathrm{H}, \mathrm{m})$ and $2.0(1 \mathrm{H}, \mathrm{br})$ (together $\left.\beta-\mathrm{H}_{2}\right), 2.11,2.15$ and 2.18 (3 H each, $\mathrm{s}, 3 \times \mathrm{Ac}$), $2.20(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.75-3.50(2 \mathrm{H}, \mathrm{m}$, $\left.\gamma-\mathrm{H}_{2}\right), 3.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.12(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.32(2 \mathrm{H}, \mathrm{d}$, $J 3$, overlapping with a broad one-proton signal due to $\alpha-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.50\left(1 \mathrm{H}, \mathrm{dt}, J 3\right.$ each, $\left.4^{\prime}-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{dd}, J 3$ and 5 , $\left.3^{\prime}-\mathrm{H}\right), 5.86(1 \mathrm{H}, \mathrm{dd}, J 5$ and 6 , overlapping with a one-proton signal due to $\left.\mathrm{NH}, 2^{\prime}-\mathrm{H}\right), 6.21\left(1 \mathrm{H}, \mathrm{d}, J 6,1^{\prime}-\mathrm{H}\right)$ and 7.71 $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{H}}\left[270 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.86$ and $2.1(1 \mathrm{H}$ each, br, $\beta-\mathrm{H}_{2}$), 1.98, 2.08, 2.10 and 2.11 (3 H each, $\mathrm{s}, 3 \times \mathrm{Ac}$ and 6-Me), 2.82-3.20 ($2 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{H}_{2}$), 3.56 and 3.58 (3 H each, s , $2 \times \mathrm{OMe}), 3.88(1 \mathrm{H}, \mathrm{br}, \alpha-\mathrm{H}), 4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.30(2 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.46\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.46\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $\left.6,3^{\prime}-\mathrm{H}\right), 5.84$ (1 H, dd, $J 5$ and $\left.6,2^{\prime}-\mathrm{H}\right), 6.42\left(1 \mathrm{H}, \mathrm{d}, J 5,1^{\prime}-\mathrm{H}\right), 7.66(1 \mathrm{H}, \mathrm{d}$, $J 7.9, \mathrm{NH}$) and $8.14(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 634.2232$. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{12}$ requires $\mathrm{M}, 634.2232$).
(R)-4-\{ $\{\alpha-[($ Methoxycarbonyl $)$ amino $]-4,6$-dimethyl-9-oxo-3-(2,3,5-tri-O-acetyl- β-D-ribofuranosyl)-4,9-dihydro-3H-imidazo-[1,2-a]purin-7-yl\}butanoic Acid Methyl Ester 25.-Compound 23 ($14 \mathrm{mg}, 0.023 \mathrm{mmol}$) was treated with trimethylsilyldiazomethane ${ }^{22}$ in a manner similar to that described for the preparation of S-isomer 24 and the product was purified by PLC on silica gel [chloroform-methanol (5:1, $\mathrm{v} / \mathrm{v})$] to afford R-isomer $25\left(14 \mathrm{mg}, 100 \%\right.$) as a foam, $\delta_{\mathrm{H}} 2.04$ $\left(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}_{2}\right), 2.11,2.14$ and $2.18(3 \mathrm{H}$ each, s, $3 \times \mathrm{Ac}$), 2.20 ($3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}$), $2.78-3.55\left(2 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{H}_{2}\right), 3.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $4.12(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.32(2 \mathrm{H}, \mathrm{d}, J 3$, overlapping with a oneproton broad signal due to $\left.\alpha-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}\right), 4.51(1 \mathrm{H}, \mathrm{dt}, J 3$ each, $\left.4^{\prime}-\mathrm{H}\right), 5.49\left(1 \mathrm{H}\right.$, dd, $J 3$ and $\left.5,3^{\prime}-\mathrm{H}\right)$, $5.84(1 \mathrm{H}$, dd, $J 5$ and 6 , overlapping with a one-proton signal due to $\left.\mathrm{NH}, 2^{\prime}-\mathrm{H}\right), 6.21$ $\left(1 \mathrm{H}, \mathrm{d}, J 6,1^{\prime}-\mathrm{H}\right)$ and $7.74(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{H}}[270 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.9$ and 2.1 (1 H each, br, $\beta-\mathrm{H}_{2}$), 1.99, 2.08, 2.10 and 2.11 (3 H each, $\mathrm{s}, 3 \times \mathrm{Ac}$ and $6-\mathrm{Me}$), 2.8-3.3 ($2 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{H}_{2}$), 3.56 and 3.58 (3 H each, s, $2 \times \mathrm{OMe}$), $3.86(1 \mathrm{H}, \mathrm{br}, \alpha-\mathrm{H}), 4.00$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 4.32 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$), $4.45\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.45$ (1 H, dd, $J 6$ and $5,3^{\prime}-\mathrm{H}$), $5.83\left(1 \mathrm{H}\right.$, dd, $J 5$ and $\left.6,2^{\prime}-\mathrm{H}\right), 6.42$ ($\left.1 \mathrm{H}, \mathrm{d}, J 6,1^{\prime}-\mathrm{H}\right), 7.66(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{NH})$ and $8.15(1 \mathrm{H}$, s, $2-\mathrm{H}$) (Found: M^{+}, 634.2238. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{12}$ requires M , 634.2232).
(S)-4-\{ $\alpha-[($ Methoxycarbonyl)amino $]-4,6$-dimethyl-9-oxo-3(β-d-ribofuranosyl)-4,9-dihydro-3H-imidazo [1,2-a $]$ purin-7-yl $\}$ butanoic Acid Methyl Ester 3.-Compound $24(57 \mathrm{mg}, 0.09$ mmol) was dissolved in $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium methoxide in methanol ($4.7 \mathrm{~cm}^{3}$), which was previously cooled in an ice-bath, and the resulting solution was kept at that temperature for 5 min . The whole was poured into cold, $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq}$. sodium dihydrogen phosphate $\left(9.5 \mathrm{~cm}^{3}\right)$. Then the mixture was concentrated to dryness under reduced pressure and the residue was purified by PLC on silica gel [chloroform-methanol-water ($20: 7: 1, \mathrm{v} / \mathrm{v}$)]. The main UV-absorbing zone was extracted with ethyl acetate-ethanol ($5: 1, \mathrm{v} / \mathrm{v}$) and the extracts were concentrated, and were then dried at 2 mmHg and $45^{\circ} \mathrm{C}$ for 8 h to afford compound $3(36 \mathrm{mg}, 78 \%)$ as a foam, $[\alpha]_{\mathrm{D}}^{23}-53.6(c$ $0.344, \mathrm{MeOH})$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.95\left(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $6-\mathrm{Me}), 3.05\left(2 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{H}_{2}\right), 3.56$ and $3.58(3 \mathrm{H}$ each, s , overlapping with a two-proton multiplet due to $5^{\prime}-\mathrm{H}_{2}$, $2 \times \mathrm{OMe}), 4.03\left(3 \mathrm{H}, \mathrm{s}\right.$, overlapping with multiplets due to $4^{\prime}-\mathrm{H}$ and $x-\mathrm{H}, \mathrm{NMe}), 4.14\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.44\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.14$ and $5.59(\mathrm{a}$ total of $3 \mathrm{H}, \mathrm{br}, 3 \times \mathrm{OH}), 6.09\left(1 \mathrm{H}, \mathrm{d}, J 5,1^{\prime}-\mathrm{H}\right)$, $7.64(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{NH})$ and $8.19(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.
(S)-4-\{ $\alpha-[($ Methoxycarbonyl)amino]-4,6-dimethyl-9-oxo-4,9-dihydro-1H-imidazo $[1,2-\mathrm{a}]$ purin-7-yl $\}$ butanoic Acid Methyl Ester 1.-A solution of compound $\mathbf{3}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ in 0.1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid ($2 \mathrm{~cm}^{3}$) was kept at room temperature for 1 h , brought to pH 7 by addition of 0.2 mol dm^{-3} aq. disodium hydrogen phosphate $\left(2 \mathrm{~cm}^{3}\right)$ and extracted
with dichloromethane $\left(5 \times 5 \mathrm{~cm}^{3}\right)$. The organic phases were combined, dried over magnesium sulfate, and concentrated under reduced pressure to leave compound $1(7 \mathrm{mg}, 100 \%$) as a solid, m.p. $216-218^{\circ} \mathrm{C}$ (decomp.). This sample was shown to be optically pure by HPLC analysis using a chiral column ${ }^{6}$ and identical with authentic compound 1^{6} in terms of ${ }^{1} \mathrm{H}$ NMR, UV and MS spectroscopy, and chromatographic behaviour.

Acknowledgements

This work was supported by a grant from the Japan Research Foundation for Optically Active Compounds and Grants-inAid for Scientific Research (Nos. 63570988 and 03670997) from the Ministry of Education, Science and Culture, Japan.

References

1 M. Sprinzl, T. Hartmann, J. Weber, J. Blank and R. Zeidler, Nucleic Acids Res., 1989, 17, rl.
2 U. L. RajBhandary, R. D. Faulkner and A. Stuart, J. Biol. Chem., 1968, 243, 575.
3 R. Thiebe and H. G. Zachau, Eur. J. Biochem., 1968, 5, 546.
4 For the congeners of 1, see T. Itaya, A. Mizutani, M. Takeda and C. Shioyama, Chem. Pharm. Bull., 1989, 37, 284 and references cited therein.
5 K. Nakanishi, N. Furutachi, M. Funamizu, D. Grunberger and I. B. Weinstein, J. Am. Chem. Soc., 1970, 92, 7617; R. Thiebe, H. G. Zachau, L. Baczynskyj, K. Biemann and J. Sonnenbichler, Biochim. Biophys. Acta, 1971, 240, 163; M. Funamizu, A. Terahara, A. M. Feinberg and K. Nakanishi, J. Am. Chem. Soc., 1971, 93, 6706; C. R. Frihart. A. M. Feinberg and K. Nakanishi, J. Org. Chem., 1978, 43, 1644.
6 T. Itaya, A. Mizutani and T. Iida, Chem. Pharm. Bull., 1991, 39, 1407.
7 H. J. Li, K. Nakanishi, D. Grunberger and I. B. Weinstein, Biochem. Biophys. Res. Commun., 1973, 55, 818; R. Thiebe and K. Poralla, FEBS Lett., 1973, 38, 27.
8 Part from this work has been published in a preliminary form: T. Itaya. M. Shimomichi and M. Ozasa, Tetrahedron Lett., 1988, 29, 4129.

9 T. Itaya, M. Morisue, M. Takeda and Y. Kumazawa, Chem. Pharm. Bull., 1990. 38, 2656.

10 R. F. Heck, Org. React., 1982, 27, 345; Palladium Reagents in Organic Syntheses, Academic Press, New York, 1985, p. 276
11 (a) T. Jeffery, J. Chem. Soc., Chem. Commun., 1984, 1287; (b) R. C. Larock and B. E. Baker, Tetrahedron Lett., 1988, 29, 905 ; R. Benhaddou, S. Czernecki and G. Ville, J. Chem. Soc., Chem. Соттип., 1988, 247.
12 (a) A. Afzali-Ardakani and H. Rapoport, J. Org. Chem., 1980, 45, 4817; (b) S. Hanessian and S. P. Sahoo, Tetrahedron Lett., 1984, 25, 1425; (c) D. H. R. Barton, D. Crich, Y. Hervé, P. Potier and J. Thierry, Tetrahedron, 1985, 41, 4347; R. Pellicciari, B. Natalini and M. Marinozzi, Synth. Commun., 1988, 18, 1715; L. Duhamel, P. Duhamel, S. Fouquay, J. J. Eddine, O. Peschard, J.-C. Plaquevent, A. Ravard, R. Solliard, J.-Y. Valnot and H. Vincens, Tetrahedron, 1988, 44, 5495; T. Weber, R. Aeschimann, T. Maetzke and D. Seebach, Helv. Chim. Acta, 1986, 69, 1365; U. Schöllkopf, J. Nozulak and U. Groth, Tetrahedron, 1984, 40, 1409; J. Mulzer, A. Angermann, B. Schubert and C. Seilz, J. Org. Chem., 1986, 51, 5294; M. Carrasco, R. J. Jones, S. Kamel, H. Rapoport and T. Truong, Org. Synth., 1991, 70, 29.

13 T. Itaya, T. Iida, S. Shimizu, A. Mizutani, M. Morisue, Y. Sugimoto and M. Tachinaka, Chem. Pharm. Bull., 1993, 41, 252.
14 G. T. Crisp and P. T. Glink, Tetrahedron, 1992, 48, 3541.
15 T. Itaya, H. Matsumoto, T. Watanabe and T. Harada, Chem. Pharm. Bull., 1985, 33, 2339.
16 C. Glemarec, J.-C. Wu, G. Remaud, H. Bazin, M. Oivanen, H. Lönnberg and J. Chattopadhyaya, Tetrahedron, 1988, 44, 1273.

17 H. Bazin, X.-X. Zhou, C. Glemarec and J. Chattopadhyaya, Tetrahedron Lett., 1987, 28, 3275.
18 C. Sambale and M. R. Kula, Biotechnol. Appl. Biochem., 1987, 9, 251 (Chem. Abstr., 1987, 107, 231994w).
19 T. Itaya, S. Shimizu, S. Nakagawa and M. Morisue, Chem. Pharm. Bull., 1994, 42, in the press.
20 We have reported the synthesis of compound 2 , the base moiety of the nucleoside 4: T. Itaya, N. Watanabe and A. Mizutani, Tetrahedron Lett., 1986, 27, 4043.
21 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
22 N. Hashimoto, T. Aoyama and T. Shioiri, Chem. Pharm. Bull., 1981, 29, 1475; S. Mori, I. Sakai, T. Aoyama and T. Shioiri, Chem. Pharm. Bull., 1982, 30, 3380.

Paper 4/02684E
Received 5th May 1994
Accepted 1st June 1994

[^0]: * Neither lactone 10 nor aldehyde 11 was formed when acid $\mathbf{8}$ was treated with a mixture of the glycine 13, iodobenzene, palladium(II) acetate, tetrabutylammonium chloride (TBACl), sodium hydrogen carbonate and dimethylformamide (DMF) at $45^{\circ} \mathrm{C}$ for 24 h .

[^1]: \dagger Utility of this reaction has been exemplified in chiral synthesis of various β, γ-unsaturated amino acid derivatives. ${ }^{14}$
 \ddagger Synthesis of this compound by iodination with a combination of iodine and silver trifluoroacetate has been reported. ${ }^{16}$

[^2]: * No racemization was observed with methyl esters of (S)-N(methoxycarbonyl)leucine and (S)- N-(methoxycarbonyl)phenylalanine on this treatment.

[^3]: \dagger Optical densities rapidly changed probably owing to photochemical isomerization to the Z-isomer. After a dilute solution of compound 11 in 95% aq. ethanol had been stored in a light room for several hours, about one tenth of the original amount of compound 11 was shown to be changed into the Z-isomer by silica gel TLC [benzene-acetone ($1: 1$, $\mathrm{v} / \mathrm{v})$] and ${ }^{1} \mathrm{H}$ NMR spectroscopy, $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.95$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $5.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.14(1 \mathrm{H}, \mathrm{dd}, J 11$ and 7.9 , $=\mathrm{CHCHO}), 7.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.12(1 \mathrm{H}, \mathrm{d}, J 11, \mathrm{CH}=\mathrm{CHCHO})$ and $9.65(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{CHO})$.

